# Height datum unification within a global vertical reference system



#### Laura Sánchez Deutsches Geodätisches Forschungsinstitut (DGFI)



Geodesy for Planet Earth, IAG Scientific Assembly 2009 September 2, 2009 Buenos Aires, Argentina

## **Objectives**



- 1. To satisfy  $H = h \zeta$  with high precision world-wide;
- 2. To define and realize a global vertical reference system supporting geometric and physical heights;
- 3. To integrate the existing local height systems into the global one.



### **Basic approach**



### Modern definition of a vertical reference system

Consistent modelling of geometric and physical parameters, i.e.  $h = H^{N} + \zeta (\approx H + N)$  in a global frame with high accuracy (> 10<sup>-9</sup>)





## Realization of $W_0$ ( $W_{0,i}$ ) by solving GBVP



#### Strategies for the vertical datum unification

A global vertical reference system has to be connected to the geometric terrestrial reference system (TRS) to satisfy  $h = H + \zeta$  world-wide. This is possible by constraining the determination of the  $\delta W_i$  terms to:

$$\gamma_{P}h_{P} - (W_{0}^{j} - W_{P}^{j}) - T_{P}^{j} - 2\delta W_{j} = 0$$



Oceanic approach (SStop around gauges) Satellite altimetry and satellite-only GGM, SSTop at coast lines including also tide gauge records.

Coastal approach (reference tide gauges) GPS positioning at tide gauges, (geopotential numbers), terrestrial gravity and satelliteonly GGM. <u>Terrestrial approach</u> (geometrical reference stations) GPS positioning at reference stations (including border points), geopotential numbers, terrestrial gravity and satellite-only GGM.

$$T_P^{j} - T_0 = \delta W^{j}$$

$$\frac{1}{2}T_P^{\ j} - \frac{1}{2}h_P\gamma_P = \delta W^{\ j}$$

$$\frac{1}{2} \left( T_P^{\,j} + \Delta C_P^{\,j} \right) - \frac{1}{2} h_P \gamma_P = \delta W^{\,j}$$

 $\frac{1}{2} \left( T_{P}^{j} + \Delta C_{P}^{j} \right) - \frac{1}{2} \left( T_{P}^{j+1} + \Delta C_{P}^{j+1} \right) = \delta W^{j+1} - \delta W^{j}$ 

### Solution of observation equations by a combined adjustment !



#### Numerical tests: coastal approach

Solution of the fixed GBVP on ocean areas:  $W_0 = 62\ 636\ 853,1\ m^2\ s^{-2}$ Geometry of the mean sea surface: CLSO1 model (Hernandez, Schaeffer 2001), Gravity disturbances from CHAMP-GRACE GGM, n=150, coefficients @ 2000.0

Solution of the scalar-free GBVP at reference tide gauges SIRGAS coordinates, EGM2008 model (coefficients @ 2000.0), zero tide system.





#### Numerical tests: coastal approach

Solution of the fixed GBVP on ocean areas:  $W_0 = 62\ 636\ 853,1\ m^2\ s^{-2}$ Geometry of the mean sea surface: CLSO1 model (Hernandez, Schaeffer 2001), Gravity disturbances from CHAMP-GRACE GGM, n=150, coefficients @ 2000.0

Solution of the scalar-free GBVP at reference tide gauges SIRGAS coordinates, EGM2008 model (coefficients @ 2000.0), zero tide system.





#### Numerical tests: coastal and oceanic approach



## Outlook

- To extend the numerical tests to the entire SIRGAS region. This implies:
  - Determination of SSTop at all the reference tide gauges;
  - GNSS positioning at the same tide gauges to distinguish sea level changes form vertical movements of the Earth's crust;
  - Continental adjustment of the first order vertical networks;
- To estimate the connection terms δW<sub>i</sub> at the definition period of the local reference levels, i.e. all heights (h, H<sup>N</sup>, ζ, SSTop) must be reduced to a common reference epoch;
- To determine the δW<sub>i</sub> using regional (or local) geoids of high resolution. The GGMs do not provide the required accuracy and resolution;
- To follow the IAG recommendations about a reliable and precise global reference level (a W<sub>0</sub> conventional value).