

Structure, status and recent achievements of the International Association of Geodesy (IAG) and its Global Geodetic Observing System GGOS

Harald Schuh - IAG Immediate Past President

Helmholtz Centre Potsdam
GFZ German Research Centre for Geosciences

Hermann Drewes - IAG Immediate Past Secretary General

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) of Technische Universität München

Rio de Janeiro, Nov. 12, 2019

Organisation of International Science

International Science Council (ISC) (2018: merger of ICSU and ISSC) Sciences: IAU, ICA, IGA, ... IUGG Social Sciences International Union of Geodesy and Geophysics (IUGG) IACS IAGA IAHS IAPSO IAG IAMAS IASPEI IAVCEI International Association of Geodesy (IAG): 71 Member countries

- → Council: Representatives of the member countries
- → Executive Committee: 16 members (elected by the Council)
- → **Bureau**: Administrative work
- Office: Management (Secretary General)

IAG Scientific Structure 2019 – 2023

Bureau

President: Zuheir Altamimi, France

Vice-president: Richard Gross, USA

Secretary General: Markku Poutanen, Finland

Commissions

1 Reference Frames (Ch. Kotsakis, GR)

2 Gravity Field (A. Jäggi, CH)

3 Geodynamics (*J. Bogusz*, PL)

4 Applications (A. Kealy, AUS)

Inter-Commission Committee on Theory (*P. Novák*, CZ)

Scientific Services

Geom.:

IERS

IGS

Gravim.:

IGFS

BGI

ICGEM

General:

BIPM

IDS

ILRS

IVS

IDEMS

IGETS

ISG

PSMSL

(Representatives in the EC: T. Herring, USA, T. Otsubo, JP, J. Böhm, AU)

Global Geodetic Observing System (GGOS) (R. Gross, USA)

Communication and Outreach Branch (COB) (Sz. Rózsa, HU)

EC Members at Large: Y. Dang, CN, S. Costa, BR

Past President: H. Schuh, DE; Past Secretary General: H. Drewes, DE

Mission and objectives of the IAG

The **mission** of the IAG is the **advancement of geodesy** by

- furthering geodetic theory through research and teaching,
- collecting, analysing, modelling and interpreting observational data,
- by stimulating technological development and
- providing a consistent representation of the figure, rotation, and gravity field of the Earth and planets, and their temporal variations.

The **objectives** of the IAG are to achieve the mission by **studying all geodetic problems related to Earth observation and global change**, i.e.:

- Definition, establishment, and maintenance of global and regional reference systems for interdisciplinary use;
- Gravity field of the Earth;
- Rotation and dynamics of the Earth and planets;
- Positioning and deformation;
- Ocean, ice and sea level.
- Atmosphere and hydrosphere.

Commission 1 "Reference Frames" Activities

1.1 Coordination of Space Techniques

- Co-location using clocks and new sensors: New site ties concepts
- Performance simulations and architectural trade-off (of the ITRF)

1.2 Global Reference Frames

- IERS Conventions (2010): update will come soon

1.3 Regional Reference Frames

- EUREF, SIRGAS, NAREF, AFREF, APREF, Antarctica
- Time-dependent transformations between reference frames

1.4 Interaction of Celestial and Terrestrial Reference Frames

- Consistent realization of ITRF, ICRF and EOP: new ICRF3 (only IAU)

WG1: Site survey and co-location

WG2: Modelling environmental loading effects

WG3: Troposphere ties

Commission 2 "Gravity Field" Activities

2.1 Gravimetry and Gravity Network

- Absolute and superconducting gravity measurements

2.2 Methodology for Geoid and Physical Height Systems

- Integration and validation of local geoid estimates

2.3 Satellite Gravity Missions

- GRACE Follow-On (GRACE FO) mission launched on May 22, 2018

2.4 Regional Geoid Determination

- Europe, South, N & Central America, Africa, Asia-Pacific, Antarctica

2.5 Satellite Altimetry

- New International Altimetry Service (under construction)

2.6 Gravity and Mass Transport in the Earth System

- Variation of groundwater, melting of ice, ...

WG: Relativistic Geodesy: Towards New Geodetic Techniques

Commission 3 "Earth Rotation and Geodynamics"

3.1 Earth Tides and Geodynamics

- International Geodynamics and Earth Tide Service (IGETS), 2017

3.2 Crustal Deformation

- New SC3.2 Volcano Geodesy (jointly with IAVCEI), 2019

3.3 Earth Rotation and Geophysical Fluids

- Global mass transport, Earth rotation and low-degree gravity change

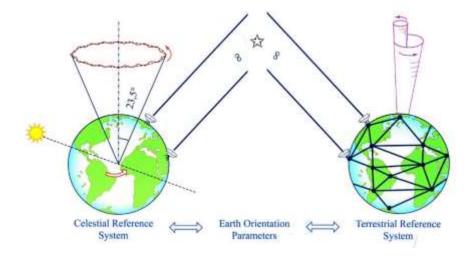
3.4 Cryospheric Deformations

- Glacial Isostatic Adjustment (GIA) research

3.5 Tectonics and Earthquake Geodesy

- Joint Sub-commission planned with IASPEI, 2019

JSG1: Intercomparison of Gravity and Height Changes


JWG1: Theory of Earth Rotation and Validation

JWG2: Constraining Vertical Land Motion of Tide Gauges

Challenges of geodesy to rotation & geodynamics

- Prove consistency of the ICRF3 (released by IAU 2018) with ITRF;
- Model the effects of mass displacements (atmosphere, hydrosphere and solid Earth) on Earth rotation

NEW (established in 2019): Inter-Assoc. Sub-commissions, IAG Inter-Commission Committees (ICC), or IAG Project:

- With IASPEI ("Seismo-geodesy")
- With IAVCEI ("Volcano-geodesy")
- With IACS ("Cryosphere geodesy")
- New ICC on "Marine geodesy" (Chair: Yuangxi Yang)
- New ICC on "Geodesy for climate research" (Chair: Anette Eicker)
- New IAG Project on "Novel sensors and quantum technology in geodesy" (Chair: Jürgen Müller)

Commission 4 "Positioning and Applications"

4.1 Emerging positioning technologies and GNSS augmentation

- Multi-sensor systems Indoor positioning and navigation
- 3D point cloud monitoring Robust positioning for urban traffic

4.2 Geo-spatial mapping and geodetic engineering

- Mobile mapping technologies Geodesy in mining engineering
- Mobile health monitoring Building information modelling

4.3 Atmosphere remote sensing

- Iono-atmosphere coupling Real-time iono-/atmosph. monitoring
- Multi-dimens. Ionosphere Impact on GNSS-positioning
- Ionosphere scintillations Troposphere tomography

4.4 Multi-constellation GNSS

- Integrity monitoring for PPP

WG1: Biases in multi-GNSS data processing

WG2: Integer ambiguity resolution for multi-GNSS PPP and PPP-RTK

Inter-Commission Committee on Theory

Joint Study Groups with Commissions / Services

- 10: High-rate GNSS
- 11: Multi-resolution aspects of potential field theory
- 12: Methods for recovery of high-resolution gravity field models
- 13: Integral equations of potential theory for continuation and transformation of classical and new gravitational observables
- 14: Fusion of multi-technique satellite geodetic data
- 15: Regional geoid/quasi-geoid modelling for sub-centimetre accur.
- 16: Earth's inner structure from geodetic and geophysical sources
- 17: Multi-GNSS theory and algorithms
- 18: High resolution harmonic analysis & synthesis of potential fields
- 19: Time series analysis in geodesy
- 20: Space weather and ionosphere
- 21: Geophysical modelling of time variations in deformation & gravity
- 22: Definition of next generation terrestrial reference frames

IAG Services

Geometry

Sravimetry

Ocean

IERS: International Earth Rotation and Reference Systems Service

IDS: International DORIS Service

IGS: International GNSS Service

ILRS: International Laser Ranging Service

IVS: International VLBI Service

IGFS: International Gravity Field Service

BGI: Bureau Gravimetrique International

ICGEM: International Centre for Global Earth Models

IDEMS: International Digital Elevation Models Service

IGETS: International Geodynamics and Earth Tide Service

ISG: International Service for the Geoid

PSMSL: Permanent Service for Mean Sea Level

IAS: International Altimetry Service (under construction)

BIPM: Bureau International des Poids et Mésures

IAG Services on Gravimetry

IGFS: International Gravity Field Service

now with a new Product Center on "Combination for Time-variable Gravity field solutions (COST-G)"

BGI: Bureau Gravimetrique International

ICGEM: International Centre for Global Earth Models

IDEMS: International Digital Elevation Model Service

IGETS: International Geodynamics and Earth Tide Service (in full operation since 2017)

ISG: International Service for the Geoid (renamed and new agreement with IAG)

17

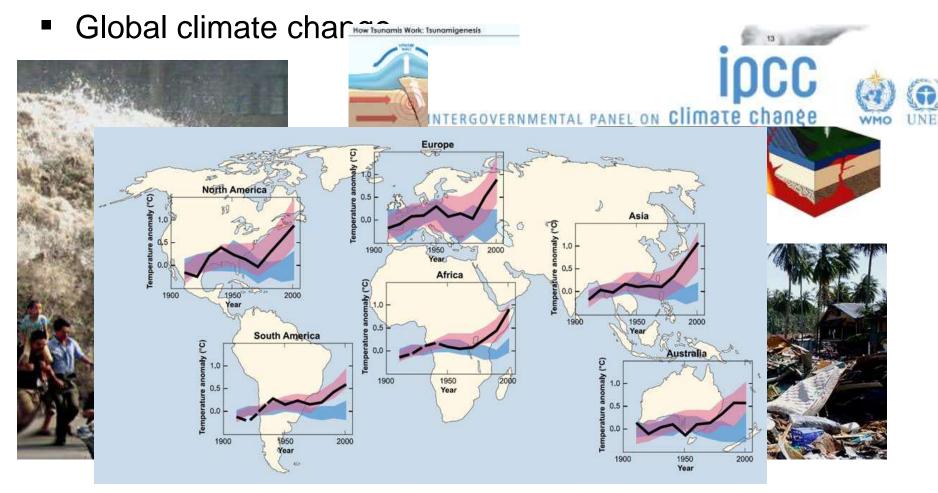
IAG Services on Geometry

IERS: International Earth Rotation and Reference Systems' Service

IGS: International GNSS Service

ILRS: International Laser Ranging Service

IVS: International Service for Geodesy and Astrometry


IDS: International DORIS

All the techniques' Services compute epoch station coordinates (weekly, monthly, session-wise) and provide them as free or loosely constrained networks to the ITRF processing centres of the IERS.

New challenges in geoscience

- Increase of natural disasters (e.g. typhoons, flooding, ...)
 - Strong demand for prediction and warning

GGOS today

IAG Bylaws 1(d)

"The Global Geodetic Observing System works with the IAG components to provide the geodetic infrastructure necessary for monitoring the Earth system and global change research."

The vision of GGOS is

"Advancing our understanding of the dynamic Earth system by quantifying our planet's changes in space and time."

Approaches of GGOS the Global Geodetic Observing System of the IAG

- combination and integration of all available observations, methods, ...
- combine physical measurements and geometric techniques

improve our understanding of the interactions in "System

GGOS – general goals

- 1 mm position and 0.1 mm/yr velocity accuracy on global scales for the ITRF
- continuous measurements (time series of EOP, station positions and baselines)
- measurements in near real-time
- highest reliability and redundancy
- low cost for construction and operation of geodetic infrastructure

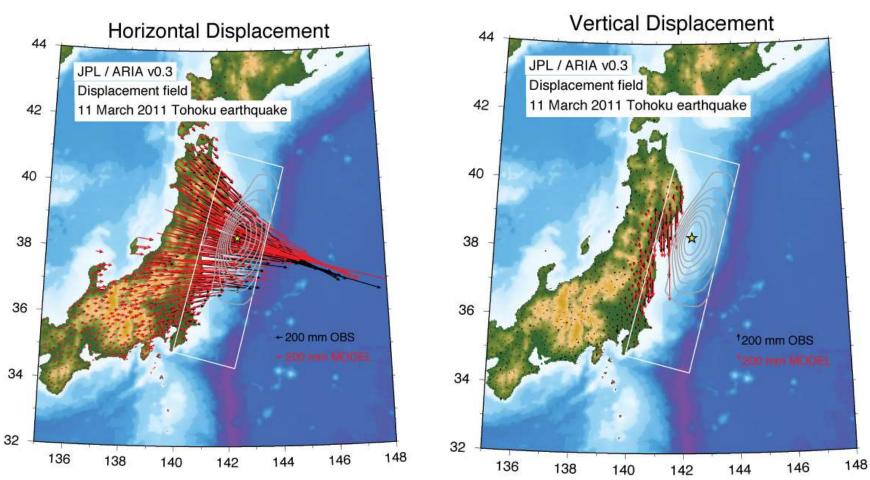
The Global Geodetic Observing System (GGOS)

By its contribution to the GEO **Societal Benefit Areas (SBA)** GGOS shall benefit science and society by providing the foundations upon which advances in Earth science and applications are built.

GGOS Days and SIRGAS Workshop 2019, Rio de Janeiro

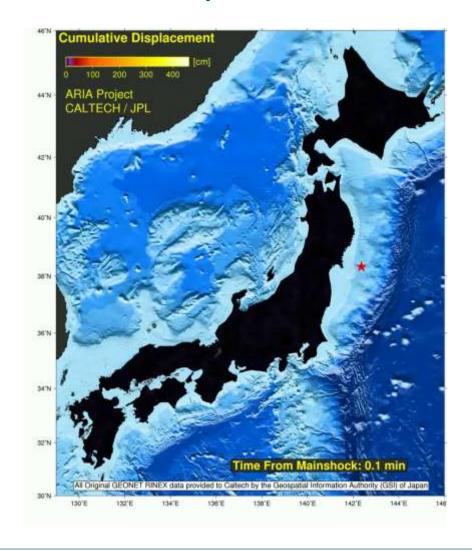
The Global Geodetic Observing System (GGOS)

GGOS shall benefit science and society by providing the foundations upon which advances in Earth science and applications are built.


Geodesy's contribution to disaster research

GGOS Days and SIRGAS Workshop 2019, Rio de Janeiro

M9.0 Tōhoku earthquake - March 11, 2011



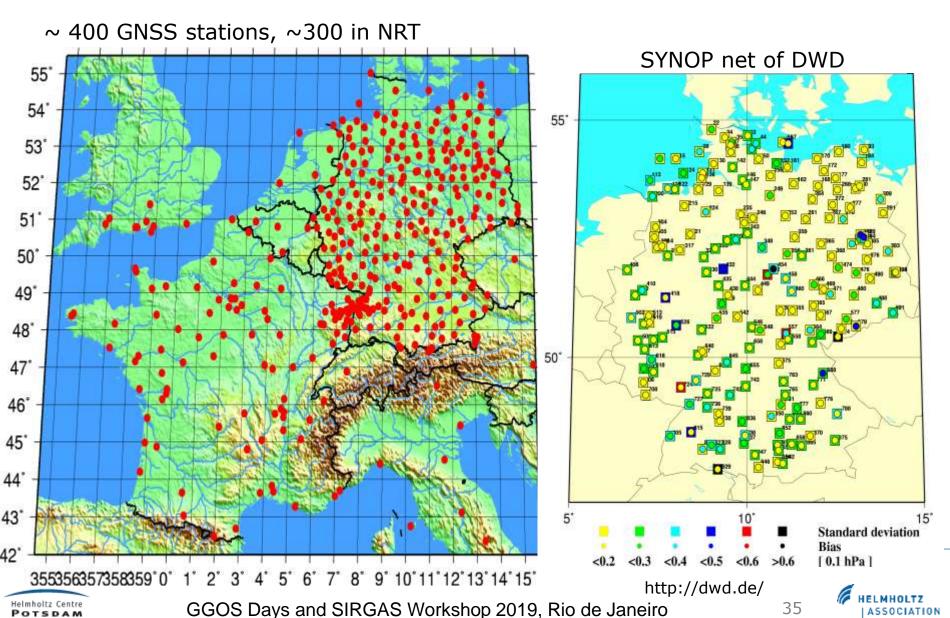
M9.0 Tōhoku earthquake – March 11, 2011 Goos

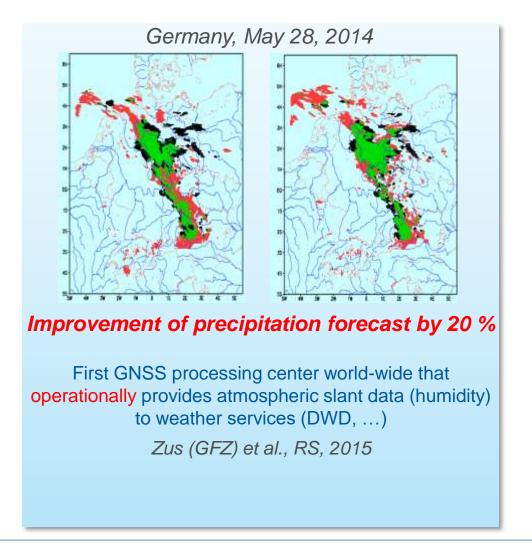
ftp://sideshow.jpl.nasa.gov/pub/usrs/ARIA/

The Global Geodetic Observing System (GGOS)

GGOS shall benefit science and society by providing the foundations upon which advances in Earth science and applications are built.

Geodesy's contribution to weather research





GNSS atmospheric monitoring: ground-based

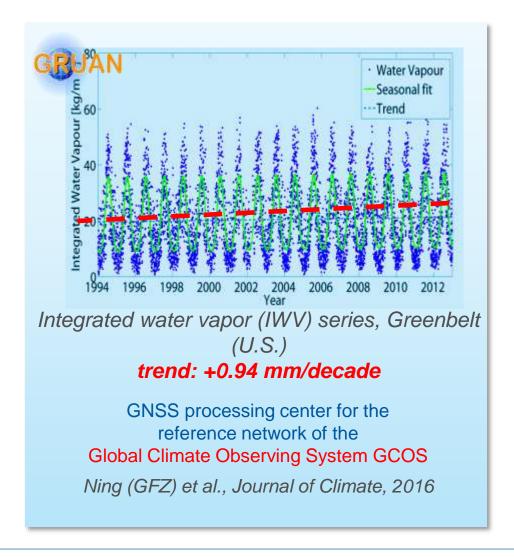
GNSS Meteorology at GFZ

Weather Forecast

The Global Geodetic Observing System (GGOS)

GGOS shall benefit science and society by providing the foundations upon which advances in Earth science and applications are built.

Geodesy's contribution to climate research



GNSS Meteorology at GFZ

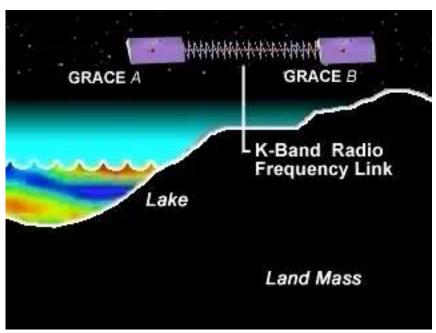
Climate Research

The Global Geodetic Observing System (GGOS)

GGOS shall benefit science and society by providing the foundations upon which advances in Earth science and applications are built.

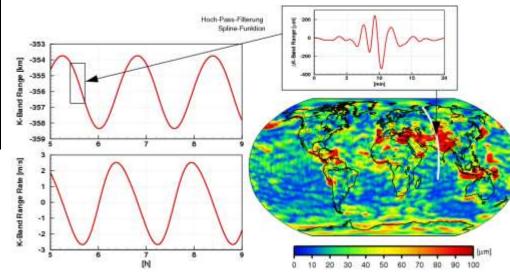
Geodesy's contribution to water research (global hydrology)

GRACE and GRACE-FO Twin Satellite Missions



GRACE Measurement Principle

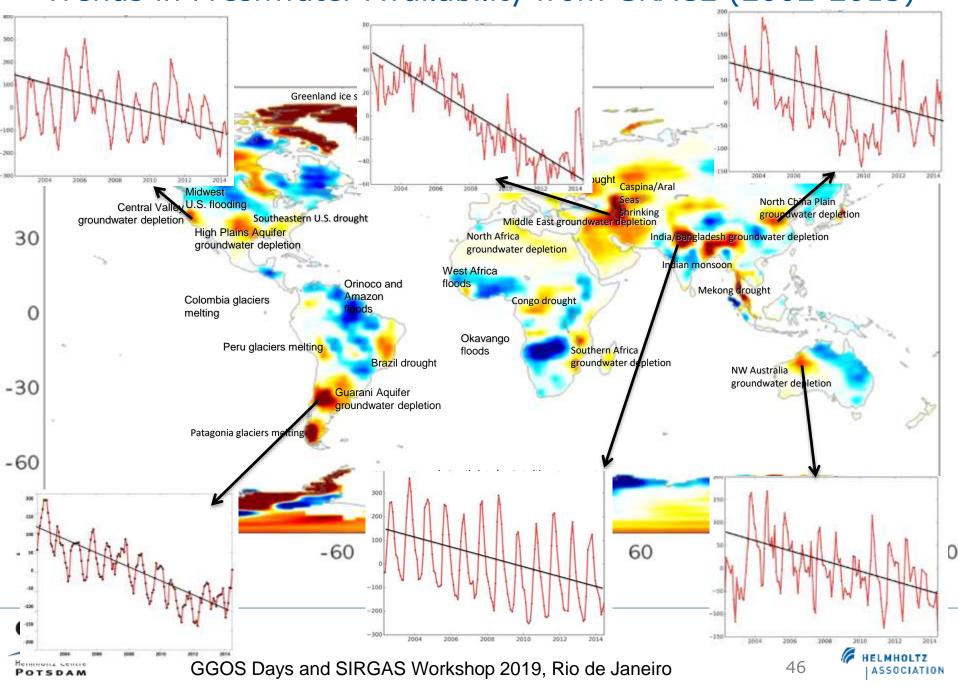
 $s = 220 \pm 50 \text{km}$


 σ_s = few μ m (a tenth of the thickness of a human hair) resp. $\sigma_s/dt = 100 \text{nm/s}$

Left: 1/rev separation change (primarily

flattening of the Earth): ±2km

Right: Observed mass change related


distance variation: $\pm 200 \, \mu m$

Trends in Freshwater Availability from GRACE (2002-2015)

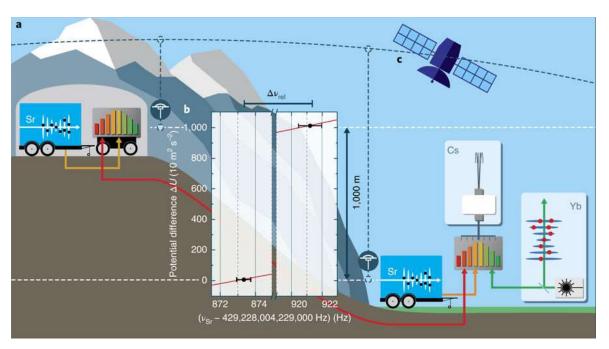
GRACE-FO launch on May 22, 2018

Outlook and future perspectives

Maintain awareness of innovation and of technological developments relevant to geodesy

Example:

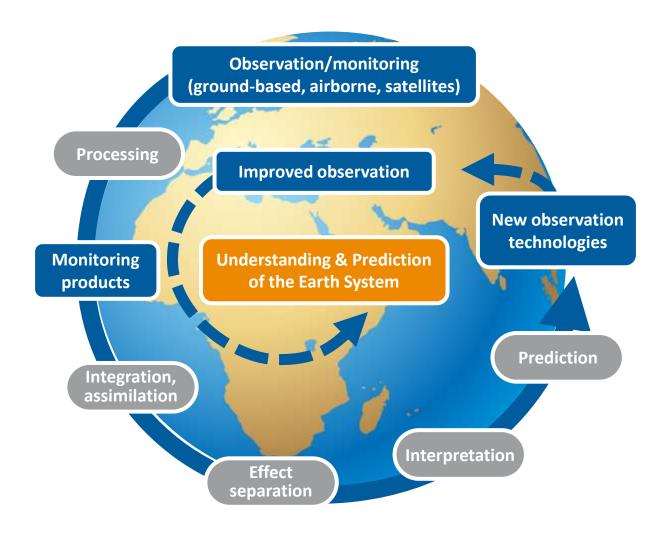
Using current developments in quantum technology, such as optical clocks for geodesy and geophysics, e.g. for height measurements

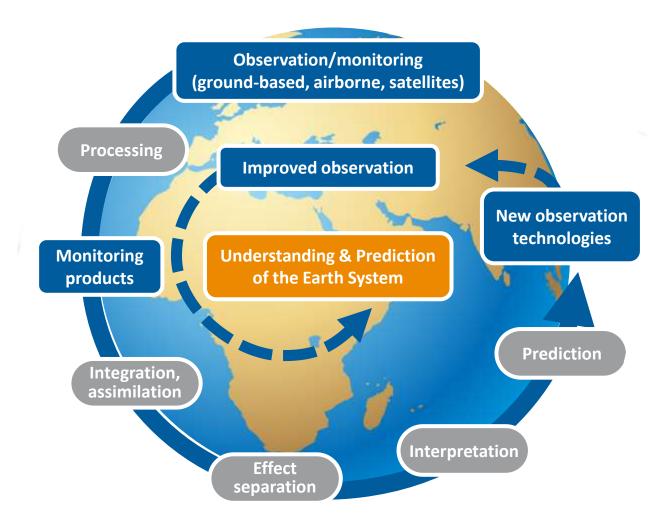


Future research tasks

Geodesy and metrology with transportable optical clocks

Authors: Jacopo Grotti,...., Christian Voigt (GFZ), ...


Nature Physics, 12 Feb 2018, doi:10.1038/s41567-017-0042-3

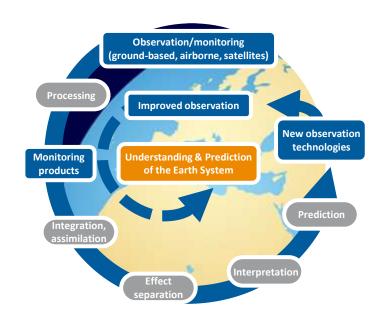

Excellent agreement between height differences from clock and from conventional geodesy: 0.19 m, but clock accuracy still two orders of magnitude below geodesy

From: **An optical clock to go**, summary on the article by Andrew D. Ludlow, *Nature Physics*, News & Views, published on 13 Feb 2018

Quantification

GGOS Days and SIRGAS Workshop 2019, Rio de Janeiro

City Cube Berlin – Venue for the 28th IUGG General Assembly



See You in Berlin in 2023, July 12-19

Thank you very much for your attention!

Conclusions

Most provoking challenges

- Reference Frames
- Gravity field
- Pos. & Applications
- Geodetic theory
- GGOS

- Geometry Services
- Gravity Services
- Combining Services

- Co- and post-seismic deformation models
- International Gravity Reference Frame (IGRF)
- Rotation & Geodyn. Joint commissions with other associations
 - Atmosphere (iono- & troposphere) models
 - Relativistic geodesy, new geodetic techniques
 - International Height Reference Frame (IHRS)
 - Essential geodetic variables
 - New GRS to replace GRS80
 - Reliable continuous ITRF
 - Recommended global gravity field model
 - Adopt IAG resolutions (W₀)
 - Sea level variation model